Mathématiques

Question

J’aurais besoin de votre aide pour cet exercice svp ( en particulier les questions 4,5 et 6). Merci d’avance
J’aurais besoin de votre aide pour cet exercice svp ( en particulier les questions 4,5 et 6). Merci d’avance

1 Réponse

  • Réponse :

    1) figure ci dessous

    2) JK² = JH² + HK²

    Donc d’après la réciproque du  

    théorème de Pythagore, le  

    triangle HJK est rectangle en H,  

    donc les droites (JH) et (KH)  

    sont perpendiculaires.

    Comme les points I, H et K sont  

    alignés, on en déduit que les  

    droites (IK) et (JH) sont  

    perpendiculaires.

    3) D’après ce qui précède et par définition, le triangle IJH est rectangle en H, donc d’après le  

    théorème de Pythagore :

    IJ² = IH² + JH² ; donc : 6,8² = IH² + 3,2² ; soit : IH² = 6,8² - 3,2²  

    = 46.24 – 10.24  

    IH² = 36

    Par conséquent : IH = 6 cm

    4)

    D’après ce qui précède, le triangle JHK est rectangle en H, donc :

    cos ̂ =

    JH

    JK

    { ou bien sin ̂ =

    HK

    JK

    ou bien tan ̂ =

    HK

    JH

    }

    cos ̂ =

    3,2

    4

    ; par conséquent : ̂ ≈ 37° au degré près

    6 )   Les droites (JH) et (IK) sont sécantes en H

    Les points J, H et L d’une part et I, H et K d’autre part sont alignés et distincts entre eux

    Les droites (IJ) et (KL) sont parallèles

    Donc, d’après le théorème de Thalès :  

    HI / HK=HJ/HL= IJ/LK

    D’où :  

    6

    2,4

    =

    IJ

    LK

    ; soit : 6 × LK = 2,4 × IJ donc : LK =  

    2,4

    6

    × IJ

    On a bien : LK = 0,4 × IJ

    Image en pièce jointe de la réponse Anonyme